|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.9arcosh or arch — arc-hyperbolic cosine function1. DefinitionArc-hyperbolic cosine is inverse of the hyperbolic cosine function. arcoshx ≡ coshinvxWith the help of natural logarithm it can be represented as: arcoshx ≡ ln[x + √(x2 − 1)]2. GraphArc-hyperbolic cosine is monotone function defined in the range [1, +∞). Its graph is depicted below — fig. 1. Fig. 1. Graph of the arc-hyperbolic cosine function y = arcoshx.Function codomain is non-negative part of real axis: [0, +∞). 3. IdentitiesReciprocal argument: arcosh(1/x) = arsechxSum and difference: arcoshx + arcoshy = arcosh{xy + √[(x2 − 1)(y2 − 1)]}arcoshx − arcoshy = arcosh{xy − √[(x2 − 1)(y2 − 1)]} arsinhx + arcoshy = arsinh{xy + √[(x2 + 1)(y2 − 1)]} = arcosh[y√(x2 + 1) + x√(y2 − 1)] 4. Derivative and indefinite integralArc-hyperbolic cosine derivative: arcosh′x = 1 /√(x2 − 1)Indefinite integral of the arc-hyperbolic cosine: ∫ arcoshx dx = x arcoshx − √(x2 − 1) + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic cosine of the number:
To get arc-hyperbolic cosine of the complex number:
To get arc-hyperbolic cosine of the current result:
To get arc-hyperbolic cosine of the number z in calculator memory:
6. SupportArc-hyperbolic cosine of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic cosine of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|