| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.2Γ or Gamma — gamma function1. DefinitionGamma function is defined as integral   or   2. GraphGamma function defined everywhere on real axis, except its singular points n = 0, −1, −2, ... — so function domain is ...∪(−2, −1)∪(−1, 0)∪(0, +∞). Its graph is depicted below — fig. 1.  Fig. 1. Graph of the gamma function y = Γ(x). Function codomain is entire real axis except 0: (−∞, 0)∪(0, +∞). 3. IdentitiesRelation to factorial:Γ(n) = (n − 1)! Factorial-like properties:Γ(x + 1) = x Γ(x) Γ(1 − x) = −x Γ(−x) Extension to negative half-axis:Γ(1 − x) = π/[Γ(x) sin(πx)] Doulbe argument:Γ(2x) = (2π)−1/2 22x − 1/2 Γ(x) Γ(x + 1/2) Triple argument:Γ(3x) = (2π)−1 33x − 1/2 Γ(x) Γ(x + 1/3) Γ(x + 2/3) Quadruple argument:Γ(4x) = (2π)−3/2 44x − 1/2 Γ(x) Γ(x + 1/4) Γ(x + 1/2) Γ(x + 3/4) Genaral formula for multiple argument:Γ(nx) = (2π)(1−n)/2 nnx − 1/2 Γ(x) Γ(x + 1/n) ... Γ(x + (n − 1)/n) Half-integer argument:Γ(−5 /2) = −8 /15 √π Γ(−3 /2) = 4 /3 √π Γ(−1 /2) = −2 √π Γ(1 /2) = √π Γ(3 /2) = 1 /2 √π Γ(5 /2) = 3 /4 √π and in general:Γ(1/2 + n) = (2n − 1)!! /2n√π = 1 × 3 × 5 × ... × (2n − 1) /2n√π for negative values:Γ(1/2 − n) = (−1)n2n/(2n − 1)!! √π = (−1)n2n/[1 × 3 × 5 × ... × (2n − 1)] √π as well, for positive odd n:Γ(n /2) = (n − 2)!! /2(n − 1)/2 √π and for negative odd n:Γ(n /2) = (−1)(n + 1)/2 2(n + 1)/2/n!! √π 4. DerivativeGamma function derivative:Γ′(z) = Γ(z) Ψ(z) where Ψ is digamma function. 5. How to useTo calculate gamma function of the number: or To get gamma function of the current result: or To get gamma function of the number z in calculator memory: or 6. SupportGamma function of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||