|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.6arccos — trigonometric arc cosine function1. DefinitionArc cosine is inverse of the cosine function. arccosx ≡ cosinvx2. GraphArc cosine is monotone function defined in the range [−1, 1]. Its graph is depicted below in fig. 1. Fig. 1. Graph of the arc cosine function y = arccosx.Function codomain is limited to the range [0, π]. 3. IdentitiesComplementary angle: arcsinx + arccosx = π/2and as consequence: arccos sin φ = π/2 − φNegative argument: arccos(−x) = π − arccosxReciprocal argument: arcos(1/x) = arcsecxSum and difference: arccosx + arccosy = arccos{xy − √[(1 − x2)(1 − y2)]}arccosx − arccosy = arccos{xy + √[(1 − x2)(1 − y2)]} Some argument values:
4. Derivative and indefinite integralArc cosine derivative: arccos′x = −1 /√(1 − x2)Indefinite integral of the arc cosine: ∫ arccosx dx = x arccosx − √(1 − x2) + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc cosine of the number:
To get arc cosine of the complex number:
To get arc cosine of the current result:
To get arc cosine of the number z in calculator memory:
6. SupportTrigonometric arc cosine of the real argument is supported in free version of the Librow calculator. Trigonometric arc cosine of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|