| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.24coth or cth — hyperbolic cotangent function1. DefinitionHyperbolic cotangent is defined ascothx ≡ (ex + e−x) /(ex − e−x) 2. GraphHyperbolic cotangent is antisymmetric function defined everywhere on real axis, except its singular point 0 — so function domain is (−∞, 0)∪(0, +∞). Its graph is depicted below — fig. 1.  Fig. 1. Graph of the hyperbolic cotangent function y = cothx. Function codomain is entire real axis with a gap in the middle: (−∞, −1)∪(1, +∞). 3. IdentitiesBase:coth2x − csch2x = 1 By definition:cothx ≡ coshx /sinhx ≡ 1 /tanhx Property of antisymmetry:coth−x = −cothx Half-argument:coth(x/2) = (1 + coshx) /sinhx coth(x/2) = sinhx /(coshx − 1) cothx = [1 + tanh2(x/2)] /[2 tanh(x/2)] Doulbe argument:coth(2x) = (coth2x + 1) /(2 cothx) Triple argument:coth(3x) = (coth3x + 3 cothx) /(3 coth2x + 1) Quadruple argument:coth(4x) = (coth4x + 6 coth2x + 1) /(4 coth3x + 4 cothx + 1) Power reduction:coth2x = (cosh(2x) + 1) /(cosh(2x) − 1) coth3x = (cosh(3x) + 3 coshx) /(sinh(3x) − 3 sinhx) coth4x = (cosh(4x) + 4 cosh(2x) + 3) /(cosh(4x) − 4 cosh(2x) + 3) coth5x = (cosh(5x) + 5 cosh(3x) + 10 coshx) /(sinh(5x) − 5 sinh(3x) + 10 sinhx) Sum and difference of arguments:coth(x + y) = (1 + cothx cothy) /(cothx + cothy) coth(x − y) = (1 − cothx cothy) /(cothx − cothy) Product:cothx cothy = [cosh(x + y) + cosh(x − y)] /[cosh(x + y) − cosh(x − y)] Sum:cothx + cothy = sinh(x + y) /(sinhx sinhy) cothx − tanhy = sinh(y − x) /(sinhx sinhy) 4. Derivative and indefinite integralHyperbolic cotangent derivative:coth′x = −csch2x ≡ −1 /sinh2x Indefinite integral of the hyperbolic cotangent:∫ cothx dx = ln|sinhx| + C where C is an arbitrary constant. 5. How to useTo calculate hyperbolic cotangent of the number: To get hyperbolic cotangent of the complex number: To get hyperbolic cotangent of the current result: To get hyperbolic cotangent of the number z in calculator memory: 6. SupportHyperbolic cotangent of the real argument is supported in free version of the Librow calculator. Hyperbolic cotangent of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||