|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.24coth or cth — hyperbolic cotangent function1. DefinitionHyperbolic cotangent is defined as cothx ≡ (ex + e−x) /(ex − e−x)2. GraphHyperbolic cotangent is antisymmetric function defined everywhere on real axis, except its singular point 0 — so function domain is (−∞, 0)∪(0, +∞). Its graph is depicted below — fig. 1. Fig. 1. Graph of the hyperbolic cotangent function y = cothx.Function codomain is entire real axis with a gap in the middle: (−∞, −1)∪(1, +∞). 3. IdentitiesBase: coth2x − csch2x = 1By definition: cothx ≡ coshx /sinhx ≡ 1 /tanhxProperty of antisymmetry: coth−x = −cothxHalf-argument: coth(x/2) = (1 + coshx) /sinhxcoth(x/2) = sinhx /(coshx − 1) cothx = [1 + tanh2(x/2)] /[2 tanh(x/2)] Doulbe argument: coth(2x) = (coth2x + 1) /(2 cothx)Triple argument: coth(3x) = (coth3x + 3 cothx) /(3 coth2x + 1)Quadruple argument: coth(4x) = (coth4x + 6 coth2x + 1) /(4 coth3x + 4 cothx + 1)Power reduction: coth2x = (cosh(2x) + 1) /(cosh(2x) − 1)coth3x = (cosh(3x) + 3 coshx) /(sinh(3x) − 3 sinhx) coth4x = (cosh(4x) + 4 cosh(2x) + 3) /(cosh(4x) − 4 cosh(2x) + 3) coth5x = (cosh(5x) + 5 cosh(3x) + 10 coshx) /(sinh(5x) − 5 sinh(3x) + 10 sinhx) Sum and difference of arguments: coth(x + y) = (1 + cothx cothy) /(cothx + cothy)coth(x − y) = (1 − cothx cothy) /(cothx − cothy) Product: cothx cothy = [cosh(x + y) + cosh(x − y)] /[cosh(x + y) − cosh(x − y)]Sum: cothx + cothy = sinh(x + y) /(sinhx sinhy)cothx − tanhy = sinh(y − x) /(sinhx sinhy) 4. Derivative and indefinite integralHyperbolic cotangent derivative: coth′x = −csch2x ≡ −1 /sinh2xIndefinite integral of the hyperbolic cotangent: ∫ cothx dx = ln|sinhx| + Cwhere C is an arbitrary constant. 5. How to useTo calculate hyperbolic cotangent of the number:
To get hyperbolic cotangent of the complex number:
To get hyperbolic cotangent of the current result:
To get hyperbolic cotangent of the number z in calculator memory:
6. SupportHyperbolic cotangent of the real argument is supported in free version of the Librow calculator. Hyperbolic cotangent of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|