|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.10arcoth or arcth — arc-hyperbolic cotangent function1. DefinitionArc-hyperbolic cotangent is inverse of hyperbolic cotangent function. arcothx ≡ cothinvxWith the help of natural logarithm it can be represented as: arcothx ≡ ln[(1 + x) /(x − 1)] /22. GraphArc-hyperbolic cotangent is antisymmetric function defined everywhere on real axis, except the range [−1, 1] — so its domain is (−∞, −1)∪(1, +∞). Points x = ±1 are singular ones. Function graph is depicted below — fig. 1. Fig. 1. Graph of the arc-hyperbolic cotangent function y = arcothx.Function codomain is all real axis, except 0: (−∞, 0)∪(0, +∞). 3. IdentitiesProperty of antisymmetry: arcoth−x = −arcothxReciprocal argument: arcoth(1/x) = artanhxSum and difference: arcothx + arcothy = arcoth[(1 + xy) /(x + y)]arcothx − arcothy = arcoth[(1 − xy) /(x − y)] 4. Derivative and indefinite integralArc-hyperbolic cotangent derivative: arcoth′x = 1 /(1 − x2)Indefinite integral of the arc-hyperbolic cotangent: ∫ arcothx dx = x arcothx + ln|x2 − 1| /2 + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic cotangent of the number:
To get arc-hyperbolic cotangent of the complex number:
To get arc-hyperbolic cotangent of the current result:
To get arc-hyperbolic cotangent of the number z in calculator memory:
6. SupportArc-hyperbolic cotangent of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic cotangent of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|