|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.39sec — trigonometric secant function1. DefinitionSecant of the angle is ratio of the hypotenuse to adjacent leg. 2. GraphSecant is 2π periodic function defined everywhere on real axis, except its singular points π/2 + πn, n = 0, ±1, ±2, ... — so function domain is (−π/2 + πn, π/2 + πn), n∈N. Its stalactite-stalagmite graph is depicted below — fig. 1. Fig. 1. Graph of the secant function y = secx.Function codomain is all real axis with gap in the middle: (−∞, −1]∪[1, +∞). 3. IdentitiesBase: csc−2φ + sec−2φ = 1and its consequences: secφ = ±1 /√(1 − sin2φ)secφ = ±√(1 + tan2φ) secφ = ±√(1 + cot2φ) / cotφ secφ = ±cscφ /√(csc2φ − 1) By definition: secφ ≡ 1 /cosφProperties — symmetry, periodicity, etc.: sec−φ = cscφsecφ = sec(φ + 2πn), where n = 0, ±1, ±2, ... secφ = −sec(π − φ) secφ = −sec(π + φ) secφ = csc(π/2 + φ) Sum of angles: sec(φ + ψ + χ) = secφ secψ secχ / (1 − tanφ tanψ − tanφ tanχ − tanψ tanχ)Some angles:
4. Derivative and indefinite integralSecant derivative: sec′x = secx tanx ≡ sinx /cos2xIndefinite integral of the secant: ∫ secx dx = ln|secx + tanx| + Cwhere C is an arbitrary constant. 5. How to useTo calculate secant of the number:
To get secant of the complex number:
To get secant of the current result:
To get secant of the angle φ in calculator memory:
6. SupportTrigonometric secant of the real argument is supported in free version of the Librow calculator. Trigonometric secant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|