|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.35log or lg — decimal logarithmic function1. DefinitionLogarithmic function is the inverse of the 10-base exponential function 10x2. GraphDecimal logarithmic function is defined on positive part of the real axis — so its domain is (0, +∞). 0 is a singular point. Function graph is depicted below — fig. 1. Fig. 1. Graph of the decimal logarithmic function y = logx.Function codomain is entire real axis. 3. IdentitiesBy definition: log10x ≡ xReciprocal argument: log(1/x) = −logxProduct and ratio of arguments: log(xy) = logx + logylog(x /y) = logx − logy Power of argument: logxa = a logxBase change: logax = logx /logalogax = logbx /logba 4. Derivative and indefinite integralDecimal logarithm derivative: log′x = 1 /(x ln10)As well: log′|x| = 1 /(x ln10)Indefinite integral of the decimal logarithm: ∫ logx dx = (x lnx − x) / ln10 + Cwhere C is an arbitrary constant. 5. How to useTo calculate decimal logarithm of the number:
To get decimal logarithm of the complex number:
To get decimal logarithm of the current result:
To get decimal logarithm of the number z in calculator memory:
6. SupportDecimal logarithm of the real argument is supported in free version of the Librow calculator. Decimal logarithm of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|