|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.8arccsc or arccosec — trigonometric arc cosecant function1. DefinitionArc cosecant is inverse of the cosecant function. arccscx ≡ cscinvx2. GraphArc cosecant is antisymmetric function defined everywhere on real axis, ecxept the range (−1, 1) — so, function domain is (−∞, −1]∪[1, +∞). Its graph is depicted below — fig. 1 Fig. 1. Graph of the arc cosecant function y = arccscx.Function codomain is limited to the range [−π/2, 0)∪(0, π/2]. 3. IdentitiesComplementary angle: arcsecx + arccscx = π/2and as consequence: arccsc sec φ = π/2 − φNegative argument: arccsc(−x) = −arccscxReciprocal argument: arcsc(1/x) = arcsinxSum and difference: arccscx + arccscy = arccsc{xy / [x√(1 − 1 /x2) + y√(1 − 1 /y2)]}arccscx − arccscy = arccsc{xy / [y√(1 − 1 /y2) − x√(1 − 1 /x2)]} Some argument values:
4. Derivative and indefinite integralArc cosecant derivative: arccsc′x = −1 /[|x| √(x2 − 1)]Indefinite integral of the arc cosecant: ∫ arccscx dx = x arccscx + signx ln|x + √(x2 − 1)| + C = x arccscx + arcosh|x| + Cwhere sign is a signum function and C is an arbitrary constant. 5. How to useTo calculate arc cosecant of the number:
To get arc cosecant of the complex number:
To get arc cosecant of the current result:
To get arc cosecant of the number z in calculator memory:
6. SupportTrigonometric arc cosecant of the real argument is supported in free version of the Librow calculator. Trigonometric arc cosecant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|