|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.44tan or tg — trigonometric tangent function1. DefinitionTangent of the angle is ratio of the opposite leg to adjacent one. 2. GraphTangent is π periodic function defined everywhere on real axis, except its singular points π/2 + πn, where n = 0, ±1, ±2, ... — so function domain is (−π/2 + πn, π/2 + πn), n∈N. Its graph is depicted below — fig. 1. Fig. 1. Graph of the tangent function y = tanx.Function codomain is entire real axis. 3. IdentitiesBase: sec2φ − tan2φ = 1and its consequences: tanφ = ±sinφ /√(1 − sin2φ)tanφ = ±√(1 − cos2φ) /cosφ tanφ = ±1 /√(csc2φ − 1) tanφ = ±√(sec2φ − 1) By definition: tanφ ≡ sinφ /cosφ ≡ 1 /cotφProperties — symmetry, periodicity, etc.: tan−φ = −tanφtanφ = tan(φ + πn), where n = 0, ±1, ±2, ... tanφ = −tan(π − φ) tanφ = −cot(π + φ) tanφ = cot(π/2 − φ) Half-angle: tan(φ/2) = ±√[(1 − cosφ) /(1 + cosφ)]tan(φ/2) = sinφ /(1 + cosφ) tan(φ/2) = (1 − cosφ) /sinφ tan(φ/2) = cscφ − cotφ tanφ = 2 tan(φ/2) /[1 − tan2(φ/2)] Double angle: tan(2φ) = 2 tanφ /(1 − tan2φ)Triple-angle: tan(3φ) = (3 tan2φ − tan3φ) /(1 − 3 tan2φ)Quadruple-angle: tan(4φ) = (4 tanφ − 4 tan3φ) /(1 − 6 tan2φ + tan4φ)Power reduction: tan2φ = [1 − cos(2φ)] /[1 + cos(2φ)] tan3φ = [3 sinφ − sin(3φ)] /[3 cosφ + cos(3φ)] tan4φ = [3 − 4 cos(2φ) + cos(4φ)] /[3 + 4 cos(2φ) + cos(4φ)] tan5φ = [10 sinφ − 5 sin(3φ) + sin(5φ)] /[10 cosφ + 5 cos(3φ) + cos(5φ)]Sum and difference of angles: tan(φ + ψ) = (tanφ + tanψ) /(1 − tanφ tanψ)tan(φ − ψ) = (tanφ − tanψ) /(1 + tanφ tanψ) tan(φ + ψ + χ) = (tanφ + tanψ + tanχ − tanφ tanψ tanχ) /(1 − tanφ tanψ − tanφ tanχ − tanψ tanχ) Product: tanφ tanψ = [cos(φ − ψ) − cos(φ + ψ)] /[cos(φ − ψ) + cos(φ + ψ)] tanφ cotψ = [sin(φ + ψ) + sin(φ − ψ)] /[sin(φ + ψ) − sin(φ − ψ)]Sum: tanφ + tanψ = sin(φ + ψ) /(cosφ cosψ)tanφ − tanψ = sin(φ − ψ) /(cosφ cosψ) Tangent of inverse functions: tan(arctan x) ≡ xtan(arcsin x) = x /√(1 − x2) tan(arccos x) = √(1 − x2) /x Some angles:
4. Derivative and indefinite integralTangent derivative: tan′x = sec2x ≡ 1 /cos2xIndefinite integral of the tangent: ∫ tanx dx = −ln|cosx| + Cwhere C is an arbitrary constant. 5. How to useTo calculate tangent of the number:
To get tangent of the complex number:
To get tangent of the current result:
To get tangent of the angle φ in calculator memory:
6. SupportTrigonometric tangent of the real argument is supported in free version of the Librow calculator. Trigonometric tangent of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|