|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.18artanh or arth — arc-hyperbolic tangent function1. DefinitionArc-hyperbolic tangent is inverse of hyperbolic tangent function. artanhx ≡ tanhinvxWith the help of natural logarithm it can be represented as: artanhx ≡ ln[(1 + x) /(1 − x)] /22. GraphArc-hyperbolic tangent is antisymmetric function defined in the range (−1, 1), points x = ±1 are singular ones. Its graph is depicted below — fig. 1. Fig. 1. Graph of the arc-hyperbolic tangent function y = artanhx.Function codomain is entire real axis. 3. IdentitiesProperty of antisymmetry: artanh−x = −artanhxReciprocal argument: artanh(1/x) = arcothxSum and difference: artanhx + artanhy = artanh[(x + y) /(1 + xy)]artanhx − artanhy = artanh[(x − y) /(1 − xy)] 4. Derivative and indefinite integralArc-hyperbolic tangent derivative: artanh′x = 1 /(1 − x2)Indefinite integral of the arc-hyperbolic tangent: ∫ artanhx dx = x artanhx + ln(1 − x2) /2 + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic tangent of the number:
To get arc-hyperbolic tangent of the complex number:
To get arc-hyperbolic tangent of the current result:
To get arc-hyperbolic tangent of the number z in calculator memory:
6. SupportArc-hyperbolic tangent of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic tangent of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|