|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.14arctan or arctg — trigonometric arc tangent function1. DefinitionArc tangent is inverse of the tangent function. arctanx ≡ taninvx2. GraphArc tangent is monotone antisymmetric function defined everywhere on real axis. Its graph is depicted below in fig. 1. Fig. 1. Graph of the arc tangent function y = arctanx.Function codomain is limited to the range (−π/2, π/2). 3. IdentitiesComplementary angle: arctanx + arccotx = π/2and as consequence: arctan cot φ = π/2 − φNegative argument: arctan(−x) = −arctanxReciprocal argument: arctan(1/x) = arccotx for x > 0,arctan(1/x) = arccotx − π for x < 0 Sum and difference: arctanx + arctany = arctan[(x + y) /(1 − xy)]arctanx − arctany = arctan[(x − y) /(1 + xy)] Some argument values:
4. Derivative and indefinite integralArc tangent derivative: arctan′x = 1 /(1 + x2)Indefinite integral of the arc tangent: ∫ arctanx dx = x arctanx − ln(1 + x2) /2 + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc tangent of the number:
To get arc tangent of the complex number:
To get arc tangent of the current result:
To get arc tangent of the number z in calculator memory:
6. SupportTrigonometric arc tangent of the real argument is supported in free version of the Librow calculator. Trigonometric arc tangent of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|