| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.21cos — trigonometric cosine function1. DefinitionCosine of the angle is ratio of the adjacent leg to hypotenuse. 2. GraphCosine is 2π periodic function defined everywhere on real axis — so its wave-like graph spreads endlessly to the left and to the right.  Fig. 1. Graph of the cosine function y = cosx. Function codomain is limited to the range [−1, 1]. 3. IdentitiesBase:sin2φ + cos2φ = 1 and its consequences:cosφ = ±√(1 − sin2φ) cosφ = ±1 /√(1 + tan2φ) cosφ = ±cotφ /√(1 + cot2φ) cosφ = ±√(csc2φ − 1) /cscφ By definition:cosφ ≡ 1 /secφ Properties — symmetry, periodicity, etc.:cos−φ = cosφ cosφ = cos(φ + 2πn), where n = 0, ±1, ±2, ... cosφ = −cos(π − φ) cosφ = −cos(π + φ) cosφ = sin(φ + π/2) Half-angle:cos(φ/2) = ±√[(1 + cosφ) /2] cosφ = [1 − tan2(φ/2)] /[1 + tan2(φ/2)] Double angle:cos(2φ) = cos2φ − sin2φ cos(2φ) = 2 cos2φ − 1 cos(2φ) = 1 − 2 sin2φ sin(2φ) = (1 − tan2φ) /(1 + tan2φ) Triple-angle:cos(3φ) = cos3φ − 3 sin2φ cosφ = 4 cos3φ − 3 cosφ Quadruple-angle:cos(4φ) = 8 cos4φ − 8 cos2φ + 1 Power reduction:cos2φ = [1 + cos(2φ)] /2 cos3φ = [3 cosφ + cos(3φ)] /4 cos4φ = [3 + 4 cos(2φ) + cos(4φ)] /8 cos5φ = [10 cosφ + 5 cos(3φ) + cos(5φ)] /16 sin2φ cos2φ = [1 − cos(4φ)] /8 sin3φ cos3φ = [3 sin(2φ) − sin(6φ)] /32 sin4φ cos4φ = [3 − 4 cos(4φ) + cos(8φ)] /128 sin5φ cos5φ = [10 sin(2φ) − 5 sin(6φ) + sin(10φ)] /512 Sum and difference of angles:cos(φ + ψ) = cosφ cosψ − sinφ sinψ cos(φ − ψ) = cosφ cosψ + sinφ sinψ Product-to-sum:cosφ cosψ = [cos(φ − ψ) + cos(φ + ψ)] /2 sinφ cosψ = [sin(φ + ψ) + sin(φ − ψ)] /2 Sum-to-product:cosφ + cosψ = 2 cos[(φ + ψ) /2] cos[(φ − ψ) /2] cosφ − cosψ = −2 sin[(φ + ψ) /2] sin[(φ − ψ) /2] cosφ + cos(φ + ψ) + cos(φ + 2ψ) + ... + cos(φ + nψ) = sin[(n + 1) ψ/2] cos(φ + nψ/2) /sin(ψ/2) Cosine of inverse functions:cos(arccos x) ≡ x cos(arcsinx) = √(1 − x2) cos(arctan x) = 1 /√(1 + x2) Some angles: 
 4. Derivative and indefinite integralCosine derivative:cos′x = −sinx Indefinite integral of the cosine:∫ cosx dx = sinx + C where C is an arbitrary constant. 5. How to useTo calculate cosine of the number: To get cosine of the complex number: To get cosine of the current result: To get cosine of the angle φ in calculator memory: 6. SupportTrigonometric cosine of the real argument is supported in free version of the Librow calculator. Trigonometric cosine of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||