| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.43sinh or sh — hyperbolic sine function1. DefinitionHyperbolic sine is defined assinhx ≡ (ex − e−x) /2 2. GraphHyperbolic sine is antisymmetric function defined everywhere on real axis. Its graph is depicted below — fig. 1.  Fig. 1. Graph of the hyperbolic sine function y = sinhx. Function codomain is entire real axis. 3. IdentitiesBase:cosh2x − sinh2x = 1 Relation to exponential function:sinhx + coshx = ex coshx − sinhx = e−x By definition:sinhx ≡ 1 /cschx Property of antisymmetry:sinh−x = −sinhx Half-argument:sinh(x/2) = √[(coshx − 1) /2] sinhx = 2 tanh(x/2) /[1 − tanh2(x/2)] Double argument:sinh(2x) = 2 sinhx coshx Triple argument:sinh(3x) = 4 sinh3x + 3 sinhx Quadruple argument:sinh(4x) = 4 sinh3x coshx + 4 sinhx cosh3x Power reduction:sinh2x = (cosh(2x) − 1) /2 sinh3x = (sinh(3x) − 3 sinhx) /4 sinh4x = (cosh(4x) − 4 cosh(2x) + 3) /8 sinh5x = (sinh(5x) − 5 sinh(3x) + 10 sinhx) /16 Sum and difference of arguments:sinh(x + y) = sinhx coshy + coshx sinhy sinh(x − y) = sinhx coshy − coshx sinhy Product-to-sum:sinhx sinhy = [cosh(x + y) − cosh(x − y)] /2 sinhx coshy = [sinh(x + y) + sinh(x − y)] /2 Sum-to-product:sinhx + sinhy = 2 sinh[(x + y) /2] cosh[(x − y) /2] sinhx − sinhy = 2 sinh[(x − y) /2] cosh[(x + y) /2] 4. Derivative and indefinite integralHyperbolic sine derivative:sinh′x = coshx Indefinite integral of the hyperbolic sine:∫ sinhx dx = coshx + C where C is an arbitrary constant. 5. How to useTo calculate hyperbolic sine of the number: To get hyperbolic sine of the complex number: To get hyperbolic sine of the current result: To get hyperbolic sine of the number z in calculator memory: 6. SupportHyperbolic sine of the real argument is supported in free version of the Librow calculator. Hyperbolic sine of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||