|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.43sinh or sh — hyperbolic sine function1. DefinitionHyperbolic sine is defined as sinhx ≡ (ex − e−x) /22. GraphHyperbolic sine is antisymmetric function defined everywhere on real axis. Its graph is depicted below — fig. 1. Fig. 1. Graph of the hyperbolic sine function y = sinhx.Function codomain is entire real axis. 3. IdentitiesBase: cosh2x − sinh2x = 1Relation to exponential function: sinhx + coshx = excoshx − sinhx = e−x By definition: sinhx ≡ 1 /cschxProperty of antisymmetry: sinh−x = −sinhxHalf-argument: sinh(x/2) = √[(coshx − 1) /2]sinhx = 2 tanh(x/2) /[1 − tanh2(x/2)] Double argument: sinh(2x) = 2 sinhx coshxTriple argument: sinh(3x) = 4 sinh3x + 3 sinhxQuadruple argument: sinh(4x) = 4 sinh3x coshx + 4 sinhx cosh3xPower reduction: sinh2x = (cosh(2x) − 1) /2sinh3x = (sinh(3x) − 3 sinhx) /4 sinh4x = (cosh(4x) − 4 cosh(2x) + 3) /8 sinh5x = (sinh(5x) − 5 sinh(3x) + 10 sinhx) /16 Sum and difference of arguments: sinh(x + y) = sinhx coshy + coshx sinhysinh(x − y) = sinhx coshy − coshx sinhy Product-to-sum: sinhx sinhy = [cosh(x + y) − cosh(x − y)] /2sinhx coshy = [sinh(x + y) + sinh(x − y)] /2 Sum-to-product: sinhx + sinhy = 2 sinh[(x + y) /2] cosh[(x − y) /2]sinhx − sinhy = 2 sinh[(x − y) /2] cosh[(x + y) /2] 4. Derivative and indefinite integralHyperbolic sine derivative: sinh′x = coshxIndefinite integral of the hyperbolic sine: ∫ sinhx dx = coshx + Cwhere C is an arbitrary constant. 5. How to useTo calculate hyperbolic sine of the number:
To get hyperbolic sine of the complex number:
To get hyperbolic sine of the current result:
To get hyperbolic sine of the number z in calculator memory:
6. SupportHyperbolic sine of the real argument is supported in free version of the Librow calculator. Hyperbolic sine of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|