| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.17arsinh or arsh — arc-hyperbolic sine function1. DefinitionArc-hyperbolic sine is inverse of hyperbolic sine function.arsinhx ≡ sinhinvx With the help of natural logarithm it can be represented as:arsinhx ≡ ln[x + √(x2 + 1)] 2. GraphArc-hyperbolic sine is antisymmetric function defined everywhere on real axis. Its graph is depicted below — fig. 1.  Fig. 1. Graph of the arc-hyperbolic sine function y = arsinhx. Function codomain is entire real axis. 3. IdentitiesProperty of antisymmetry:arsinh−x = −arsinhx Reciprocal argument:arsinh(1/x) = arcschx Sum and difference:arsinhx + arsinhy = arsinh[x√(y2 + 1) + y√(x2 + 1)] arsinhx − arsinhy = arsinh[x√(y2 + 1) − y√(x2 + 1)] arsinhx + arcoshy = arsinh{xy + √[(x2 + 1)(y2 − 1)]} = arcosh[y√(x2 + 1) + x√(y2 − 1)] 4. Derivative and indefinite integralArc-hyperbolic sine derivative:arsinh′x = 1 /√(1 + x2) Indefinite integral of the arc-hyperbolic sine:∫ arsinhx dx = x arsinhx − √(1 + x2) + C where C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic sine of the number: To get arc-hyperbolic sine of the complex number: To get arc-hyperbolic sine of the current result: To get arc-hyperbolic sine of the number z in calculator memory: 6. SupportArc-hyperbolic sine of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic sine of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||