|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.17arsinh or arsh — arc-hyperbolic sine function1. DefinitionArc-hyperbolic sine is inverse of hyperbolic sine function. arsinhx ≡ sinhinvxWith the help of natural logarithm it can be represented as: arsinhx ≡ ln[x + √(x2 + 1)]2. GraphArc-hyperbolic sine is antisymmetric function defined everywhere on real axis. Its graph is depicted below — fig. 1. Fig. 1. Graph of the arc-hyperbolic sine function y = arsinhx.Function codomain is entire real axis. 3. IdentitiesProperty of antisymmetry: arsinh−x = −arsinhxReciprocal argument: arsinh(1/x) = arcschxSum and difference: arsinhx + arsinhy = arsinh[x√(y2 + 1) + y√(x2 + 1)]arsinhx − arsinhy = arsinh[x√(y2 + 1) − y√(x2 + 1)] arsinhx + arcoshy = arsinh{xy + √[(x2 + 1)(y2 − 1)]} = arcosh[y√(x2 + 1) + x√(y2 − 1)] 4. Derivative and indefinite integralArc-hyperbolic sine derivative: arsinh′x = 1 /√(1 + x2)Indefinite integral of the arc-hyperbolic sine: ∫ arsinhx dx = x arsinhx − √(1 + x2) + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic sine of the number:
To get arc-hyperbolic sine of the complex number:
To get arc-hyperbolic sine of the current result:
To get arc-hyperbolic sine of the number z in calculator memory:
6. SupportArc-hyperbolic sine of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic sine of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|