| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.11arcsch — arc-hyperbolic cosecant function1. DefinitionArc-hyperbolic cosecant is inverse of hyperbolic cosecant function.arcschx ≡ cschinvx With the help of natural logarithm it can be represented as:arcschx ≡ ln[1/x + √(1/x2 + 1)] 2. GraphArc-hyperbolic cosecant is antisymmetric function defined everywhere on real axis, except its singular point 0 — so its domain is (−∞, 0)∪(0, +∞). Function graph is depicted below — fig. 1.  Fig. 1. Graph of the arc-hyperbolic cosecant function y = arcschx. Function codomain is all real axis, except 0: (−∞, 0)∪(0, +∞). 3. IdentitiesProperty of antisymmetry:arcsch−x = −arcschx Reciprocal argument:arcsch(1/x) = arsinhx Sum and difference:arcschx + arcschy = arcsch{xy / [x√(1 + 1 /x2) + y√(1 + 1 /y2)]} arcschx − arcschy = arcsch{xy / [y√(1 + 1 /y2) − x√(1 + 1 /x2)]} 4. Derivative and indefinite integralArc-hyperbolic cosecant derivative:arcsch′x = −1 /[|x| √(1 + x2)] Indefinite integral of the arc-hyperbolic cosecant:∫ arcschx dx = x arcschx + ln[x + √(1 + x2)] + C where C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic cosecant of the number: To get arc-hyperbolic cosecant of the complex number: To get arc-hyperbolic cosecant of the current result: To get arc-hyperbolic cosecant of the number z in calculator memory: 6. SupportArc-hyperbolic cosecant of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic cosecant of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||