|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.11arcsch — arc-hyperbolic cosecant function1. DefinitionArc-hyperbolic cosecant is inverse of hyperbolic cosecant function. arcschx ≡ cschinvxWith the help of natural logarithm it can be represented as: arcschx ≡ ln[1/x + √(1/x2 + 1)]2. GraphArc-hyperbolic cosecant is antisymmetric function defined everywhere on real axis, except its singular point 0 — so its domain is (−∞, 0)∪(0, +∞). Function graph is depicted below — fig. 1. Fig. 1. Graph of the arc-hyperbolic cosecant function y = arcschx.Function codomain is all real axis, except 0: (−∞, 0)∪(0, +∞). 3. IdentitiesProperty of antisymmetry: arcsch−x = −arcschxReciprocal argument: arcsch(1/x) = arsinhxSum and difference: arcschx + arcschy = arcsch{xy / [x√(1 + 1 /x2) + y√(1 + 1 /y2)]}arcschx − arcschy = arcsch{xy / [y√(1 + 1 /y2) − x√(1 + 1 /x2)]} 4. Derivative and indefinite integralArc-hyperbolic cosecant derivative: arcsch′x = −1 /[|x| √(1 + x2)]Indefinite integral of the arc-hyperbolic cosecant: ∫ arcschx dx = x arcschx + ln[x + √(1 + x2)] + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic cosecant of the number:
To get arc-hyperbolic cosecant of the complex number:
To get arc-hyperbolic cosecant of the current result:
To get arc-hyperbolic cosecant of the number z in calculator memory:
6. SupportArc-hyperbolic cosecant of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic cosecant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|