| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.1√ or sqrt — square root function1. DefinitionSquare root function is inverse of the power function with power a = 2x2 The square root is denoted with radical symbol:√x Square root is equivalent to the power of one second:√x ≡ x1/2 2. GraphSquare root function defined for non-negative part of real axis — so, its domain is [0, +∞). Function graph is depicted below — fig. 1.  Fig. 1. Graph of the square root function y = √x. Function codomain non-negative part of the real axis: [0, +∞). 3. IdentitiesTake into account, that because of square root defined only for non-negative values, and power of two defined everywhere, the order of these two functions makes difference:√x2 ≡ x √(x2) ≡ |x| and as wellx ≡ signx √(x2) Reciprocal argument:√(1/x) = 1 /√x Product and ratio of arguments:√(xy) = √|x|√|y| √(x/y) = √|x| /√|y| Power of argument:√(xa) = √|x|a ≡ |x|a/2 4. Solution of quadratic equationQuadratic equationax2 + bx + c = 0 has rootsx = [−b ± √(b2 − 4ac)] /(2a) For equation with even coefficient for the first power ax2 + 2bx + c = 0 roots have simplified formx = [−b ± √(b2 − ac)] /a 5. Solution of normalized quadratic equationNormalized quadratic equation x2 + bx + c = 0 has rootsx = [−b ± √(b2 − 4c)] /2 And equation with even coefficient for the first power x2 + 2bx + c = 0 has the simplest form for its rootsx = −b ± √(b2 − c) 6. Derivative and indefinite integralSquare root derivative:√x′ = 1 /(2√x) Indefinite integral of the square root:∫ √x dx = 2x√x/3 + C where C is an arbitrary constant. 7. How to useTo calculate square root of the number: or To get square root of the complex number: or To get square root of the current result: or To get square root of the number z in calculator memory: or 8. SupportSquare root of the real argument is supported in free version of the Librow calculator. Square root of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||