|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.26csch — hyperbolic cosecant function1. DefinitionHyperbolic cosecant is defined as cschx ≡ 2 /(ex − e−x)2. GraphHyperbolic cosecant is antisymmetric function defined everywhere on real axis, except its singular point 0 — so its domain is (−∞, 0)∪(0, +∞). Function graph is depicted below — fig. 1. Fig. 1. Graph of the hyperbolic cosecant function y = cschx.Function codomain is all real axis except 0: (−∞, 0)∪(0, +∞). 3. IdentitiesBase: coth2x − csch2x = 1By definition: cschx ≡ 1 /sinhxProperty of antisymmetry: csch−x = −cschx4. Derivative and indefinite integralHyperbolic cosecant derivative: csch′x = −cschx cothx ≡ −coshx /sinh2xIndefinite integral of the hyperbolic cosecant: ∫ cschx dx = ln|cothx − cschx| + C = ln|tanh(x/2)| + Cwhere C is an arbitrary constant. 5. How to useTo calculate hyperbolic cosecant of the number:
To get hyperbolic cosecant of the complex number:
To get hyperbolic cosecant of the current result:
To get hyperbolic cosecant of the number z in calculator memory:
6. SupportHyperbolic cosecant of the real argument is supported in free version of the Librow calculator. Hyperbolic cosecant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|