|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.19ceil — ceiling function1. DefinitionCeiling is the nearest integer to the righ — the smallest integer greater than or equal to the argument. 2. GraphThe ceiling function is defined everywhere on the real axis — so its domain is (−∞, +∞). Its stair-like graph is depicted below — fig. 1. Fig. 1. Graph of the ceiling function y = ceilx.The function codomain is the set of integer numbers. 3. How to useTo calculate the ceiling of the number:
To get the ceiling of the complex number:
To get the ceiling of the current result:
To get the ceiling of the number z in calculator memory:
4. SupportThe ceiling function of the complex argument is supported in the professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|