|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.12arcsec — trigonometric arc secant function1. DefinitionArc secant is inverse of the secant function. arcsecx ≡ secinvx2. GraphArc secant is discontinuous function defined on all real axis except the (−1, 1) range — so its domain is (−∞, −1]∪[1, +∞). Function graph is depicted below — fig. 1. Fig. 1. Graph of the arc secant function y = arcsecx.Function codomain is limited to the range [0, π/2)∪(π/2, π]. 3. IdentitiesComplementary angle: arcsecx + arccscx = π/2and as consequence: arcsec csc φ = π/2 − φNegative argument: arcsec(−x) = π − arcsecxReciprocal argument: arsec(1/x) = arccosxSum and difference: arcsecx + arcsecy = arcsec(xy /{1 − xy√[(1 − 1 /x2)(1 − 1 /y2)]})arcsecx − arcsecy = arcsec(xy /{1 + xy√[(1 − 1 /x2)(1 − 1 /y2)]}) Some argument values:
4. Derivative and indefinite integralArc secant derivative: arcsec′x = 1 /[|x| √(x2 − 1)]Indefinite integral of the arc secant: ∫ arcsecx dx = x arcsecx − signx ln|x + √(x2 − 1)| + C = x arcsecx − arcosh|x| + Cwhere sign is a signum function and C is an arbitrary constant. 5. How to useTo calculate arc secant of the number:
To get arc secant of the complex number:
To get arc secant of the current result:
To get arc secant of the number z in calculator memory:
6. SupportTrigonometric arc secant of the real argument is supported in free version of the Librow calculator. Trigonometric arc secant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|