|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.25csc or cosec — trigonometric cosecant function1. DefinitionCosecant of the angle is ratio of the hypotenuse to opposite leg. 2. GraphCosecant is 2π periodic function defined everywhere on real axis, except its singular points πn, n = 0, ±1, ±2, ... — so function domain is (πn, π(n + 1)), n∈N. Its stalactite-stalagmite graph is depicted below — fig. 1. Fig. 1. Graph of the cosecant function y = cscx.Function codomain is entire real axis with a gap in the middle: (−∞, −1]∪[1, +∞). 3. IdentitiesBase: csc−2φ + sec−2φ = 1and its consequences: cscφ = ±1 /√(1 − cos2φ)cscφ = ±√(1 + tan2φ) / tanφ cscφ = ±√(1 + cot2φ) cscφ = ±secφ /√(sec2φ − 1) By definition: cscφ ≡ 1 /sinφProperties — symmetry, periodicity, etc.: csc−φ = −cscφcscφ = csc(φ + 2πn), where n = 0, ±1, ±2, ... cscφ = csc(π − φ) cscφ = −csc(π + φ) cscφ = sec(π/2 − φ) Sum of angles: csc(φ + ψ + χ) = secφ secψ secχ / (tanφ + tanψ + tanχ − tanφ tanψ tanχ)Some angles:
4. Derivative and indefinite integralCosecant derivative: csc′x = −cscx cotx ≡ −cosx /sin2xIndefinite integral of the cosecant: ∫ cscx dx = ln|cscx − cotx| + C = ln|tan(x/2)| + Cwhere C is an arbitrary constant. 5. How to useTo calculate cosecant of the number:
To get cosecant of the complex number:
To get cosecant of the current result:
To get cosecant of the angle φ in calculator memory:
6. SupportTrigonometric cosecant of the real argument is supported in free version of the Librow calculator. Trigonometric cosecant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|