|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.40sech — hyperbolic secant function1. DefinitionHyperbolic secant is defined as sechx ≡ 2 /(ex + e−x)2. GraphHyperbolic secant is symmetric function defined everywhere on real axis. Its graph is depicted below — fig. 1. Fig. 1. Graph of the hyperbolic secant function y = sechx.Function codomain is limited to the range (0, 1]. 3. IdentitiesBase: sech2x + tanh2x = 1By definition: sechx ≡ 1 /coshxProperty of symmetry: sech−x = sechx4. Derivative and indefinite integralHyperbolic secant derivative: sech′x = −sechx tanhx ≡ sinhx /cosh2xIndefinite integral of the hyperbolic secant: ∫ sechx dx = arctan(sinhx) + Cwhere C is an arbitrary constant. 5. How to useTo calculate hyperbolic secant of the number:
To get hyperbolic secant of the complex number:
To get hyperbolic secant of the current result:
To get hyperbolic secant of the number z in calculator memory:
6. SupportHyperbolic secant of the real argument is supported in free version of the Librow calculator. Hyperbolic secant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|