| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.40sech — hyperbolic secant function1. DefinitionHyperbolic secant is defined assechx ≡ 2 /(ex + e−x) 2. GraphHyperbolic secant is symmetric function defined everywhere on real axis. Its graph is depicted below — fig. 1.  Fig. 1. Graph of the hyperbolic secant function y = sechx. Function codomain is limited to the range (0, 1]. 3. IdentitiesBase:sech2x + tanh2x = 1 By definition:sechx ≡ 1 /coshx Property of symmetry:sech−x = sechx 4. Derivative and indefinite integralHyperbolic secant derivative:sech′x = −sechx tanhx ≡ sinhx /cosh2x Indefinite integral of the hyperbolic secant:∫ sechx dx = arctan(sinhx) + C where C is an arbitrary constant. 5. How to useTo calculate hyperbolic secant of the number: To get hyperbolic secant of the complex number: To get hyperbolic secant of the current result: To get hyperbolic secant of the number z in calculator memory: 6. SupportHyperbolic secant of the real argument is supported in free version of the Librow calculator. Hyperbolic secant of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||