|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.42sin — trigonometric sine function1. DefinitionSine of the angle is ratio of the opposite leg to hypotenuse. 2. GraphSine is 2π periodic function defined everywhere on real axis — so its wave-like graph spreads endlessly to the left and to the right. Fig. 1. Graph of the sine function y = sinx.Function codomain is limited to the range [−1, 1]. 3. IdentitiesBase: sin2φ + cos2φ = 1and its consequences: sinφ = ±√(1 − cos2φ)sinφ = ±tanφ /√(1 + tan2φ) sinφ = ±1 /√(1 + cot2φ) sinφ = ±√(sec2φ − 1) /secφ By definition: sinφ ≡ 1 /cscφProperties — symmetry, periodicity, etc.: sin−φ = −sinφsinφ = sin(φ + 2πn), where n = 0, ±1, ±2, ... sinφ = sin(π − φ) sinφ = −sin(π + φ) sinφ = cos(π/2 − φ) Half-angle: sin(φ/2) = ±√[(1 − cosφ) /2]sinφ = 2 tan(φ/2) /[1 + tan2(φ/2)] Double angle: sin(2φ) = 2 sinφ cosφsin(2φ) = 2 tanφ /(1 + tan2φ) Triple-angle: sin(3φ) = 3 cos2φ sinφ − sin3φ = 3 sinφ − 4 sin3φQuadruple-angle: sin(4φ) = cosφ (4 sinφ − 8 sin3φ)Power reduction: sin2φ = [1 − cos(2φ)] /2 sin3φ = [3 sinφ − sin(3φ)] /4 sin4φ = [3 − 4 cos(2φ) + cos(4φ)] /8 sin5φ = [10 sinφ − 5 sin(3φ) + sin(5φ)] /16sin2φ cos2φ = [1 − cos(4φ)] /8 sin3φ cos3φ = [3 sin(2φ) − sin(6φ)] /32 sin4φ cos4φ = [3 − 4 cos(4φ) + cos(8φ)] /128 sin5φ cos5φ = [10 sin(2φ) − 5 sin(6φ) + sin(10φ)] /512 Sum and difference of angles: sin(φ + ψ) = sinφ cosψ + cosφ sinψsin(φ − ψ) = sinφ cosψ − cosφ sinψ Product-to-sum: sinφ sinψ = [cos(φ − ψ) − cos(φ + ψ)] /2 sinφ cosψ = [sin(φ + ψ) + sin(φ − ψ)] /2Sum-to-product: sinφ + sinψ = 2 sin[(φ + ψ) /2] cos[(φ − ψ) /2]sinφ − sinψ = 2 sin[(φ − ψ) /2] cos[(φ + ψ) /2] sinφ + sin(φ + ψ) + sin(φ + 2ψ) + ... + sin(φ + nψ) = sin[(n + 1) ψ/2] sin(φ + nψ/2) /sin(ψ/2) Sine of inverse functions: sin(arcsin x) ≡ xsin(arccos x) = √(1 − x2) sin(arctan x) = x /√(1 + x2) Some angles:
4. Derivative and indefinite integralSine derivative: sin′x = cosxIndefinite integral of the sine: ∫ sinx dx = −cosx + Cwhere C is an arbitrary constant. 5. How to useTo calculate sine of the number:
To get sine of the complex number:
To get sine of the current result:
To get sine of the angle φ in calculator memory:
6. SupportTrigonometric sine of the real argument is supported in free version of the Librow calculator. Trigonometric sine of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|