| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.16arsech or arsch — arc-hyperbolic secant function1. DefinitionArc-hyperbolic secant is inverse of hyperbolic secant function.arsechx ≡ sechinvx With the help of natural logarithm it can be represented as:arsechx ≡ ln{[1 + √(1 − x2)] /x} 2. GraphArc-hyperbolic secant is monotone function defined in the range (0, 1], point x = 0 is singular one. Its graph is depicted below — fig. 1.  Fig. 1. Graph of the arc-hyperbolic secant function y = arsechx. Function codomain is non-negative part of real axis: [0, +∞). 3. IdentitiesReciprocal argument:arsech(1/x) = arcoshx Sum and difference:arsechx + arsechy = arsech(xy /{1 + √[(1 − x2)(1 − y2)]}) arsechx − arsechy = arsech(xy /{1 − √[(1 − x2)(1 − y2)]}) 4. Derivative and indefinite integralArc-hyperbolic secant derivative:arsech′x = −1 /[x √(1 − x2)] Indefinite integral of the arc-hyperbolic secant:∫ arsechx dx = x arsechx + arcsinx + C where C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic secant of the number: To get arc-hyperbolic secant of the complex number: To get arc-hyperbolic secant of the current result: To get arc-hyperbolic secant of the number z in calculator memory: 6. SupportArc-hyperbolic secant of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic secant of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||