|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.16arsech or arsch — arc-hyperbolic secant function1. DefinitionArc-hyperbolic secant is inverse of hyperbolic secant function. arsechx ≡ sechinvxWith the help of natural logarithm it can be represented as: arsechx ≡ ln{[1 + √(1 − x2)] /x}2. GraphArc-hyperbolic secant is monotone function defined in the range (0, 1], point x = 0 is singular one. Its graph is depicted below — fig. 1. Fig. 1. Graph of the arc-hyperbolic secant function y = arsechx.Function codomain is non-negative part of real axis: [0, +∞). 3. IdentitiesReciprocal argument: arsech(1/x) = arcoshxSum and difference: arsechx + arsechy = arsech(xy /{1 + √[(1 − x2)(1 − y2)]})arsechx − arsechy = arsech(xy /{1 − √[(1 − x2)(1 − y2)]}) 4. Derivative and indefinite integralArc-hyperbolic secant derivative: arsech′x = −1 /[x √(1 − x2)]Indefinite integral of the arc-hyperbolic secant: ∫ arsechx dx = x arsechx + arcsinx + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc-hyperbolic secant of the number:
To get arc-hyperbolic secant of the complex number:
To get arc-hyperbolic secant of the current result:
To get arc-hyperbolic secant of the number z in calculator memory:
6. SupportArc-hyperbolic secant of the real argument is supported in free version of the Librow calculator. Arc-hyperbolic secant of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|