|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.7arccot or arcctg — trigonometric arc cotangent function1. DefinitionArc cotangent is inverse of the cotangent function. arccotx ≡ cotinvx2. GraphArc cotangent is monotone function defined everywhere on real axis. Its graph is depicted below — fig. 1. Fig. 1. Graph of the arc cotangent function y = arccotx.Function codomain is limited to the range (0, π). 3. IdentitiesComplementary angle: arctanx + arccotx = π/2and as consequence: arccot tan φ = π/2 − φNegative argument: arccot(−x) = π − arccotxReciprocal argument: arccot(1/x) = arctanx for x > 0,arccot(1/x) = arctanx + π for x < 0 Sum and difference: arccotx + arccoty = arccot[(xy − 1) /(x + y)]arccotx − arccoty = arccot[(xy + 1) /(y − x)] Some argument values:
4. Derivative and indefinite integralArc cotangent derivative: arccot′x = −1 /(1 + x2)Indefinite integral of the arc cotangent: ∫ arccotx dx = x arccotx + ln(1 + x2) /2 + Cwhere C is an arbitrary constant. 5. How to useTo calculate arc cotangent of the number:
To get arc cotangent of the complex number:
To get arc cotangent of the current result:
To get arc cotangent of the number z in calculator memory:
6. SupportTrigonometric arc cotangent of the real argument is supported in free version of the Librow calculator. Trigonometric arc cotangent of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|