| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.23cot or ctg — trigonometric cotangent function1. DefinitionCotangent of the angle is ratio of the ajacent leg to opposite one. 2. GraphCotangent is π periodic function defined everywhere on real axis, except its singular points πn, where n = 0, ±1, ±2, ... — so, function domain is (πn, π(n + 1)), n∈N. Its graph is depicted below — fig. 1.  Fig. 1. Graph of the cotangent function y = cotx. Function codomain is entire real axis. 3. IdentitiesBase:csc2φ − cot2φ = 1 and its consequences:cotφ = ±√(1 − sin2φ) /sinφ cotφ = ±cosφ /√(1 − cos2φ) cotφ = ±1 /√(sec2φ − 1) cotφ = ±√(csc2φ − 1) By definition:cotφ ≡ cosφ /sinφ ≡ 1 /tanφ Properties — symmetry, periodicity, etc.:cot−φ = −cotφ cotφ = cot(φ + πn), where n = 0, ±1, ±2, ... cotφ = −cot(π − φ) cotφ = −tan(π + φ) cotφ = tan(π/2 − φ) Half-angle:cot(φ/2) = ±√[(1 + cosφ) /(1 − cosφ)] cot(φ/2) = sinφ /(1 − cosφ) cot(φ/2) = (1 + cosφ) /sinφ cot(φ/2) = cscφ + cotφ cotφ = [1 − tan2(φ/2)] /[2 tan(φ/2)] Double angle:cot(2φ) = (cot2φ − 1) /(2 cotφ) Triple-angle:cot(3φ) = (3 cot2φ − cot3φ) /(1 − 3 cot2φ) Quadruple-angle:cot(4φ) = (1 + cot4φ − 6 cot2φ) /(4 cot3φ − 4 cotφ) Power reduction:cot2φ = [1 + cos(2φ)] /[1 − cos(2φ)] cot3φ = [3 cosφ + cos(3φ)] /[3 sinφ − sin(3φ)] cot4φ = [3 + 4 cos(2φ) + cos(4φ)] /[3 − 4 cos(2φ) + cos(4φ)] cot5φ = [10 cosφ + 5 cos(3φ) + cos(5φ)] /[10 sinφ − 5 sin(3φ) + sin(5φ)] Sum and difference of angles:cot(φ + ψ) = (cotφ cotψ − 1) /(cotφ + cotψ) cot(φ − ψ) = (cotφ cotψ + 1) /(cotψ − cotφ) cot(φ + ψ + χ) = (cotφ + cotψ + cotχ − cotφ cotψ cotχ) /(1 − cotφ cotψ − cotφ cotχ − cotψ tanχ) Product:cotφ cotψ = [cos(φ − ψ) + cos(φ + ψ)] /[cos(φ − ψ) − cos(φ + ψ)] tanφ cotψ = [sin(φ + ψ) + sin(φ − ψ)] /[sin(φ + ψ) − sin(φ − ψ)] Sum:cotφ + cotψ = sin(φ + ψ) /(sinφ sinψ) cotφ − cotψ = sin(ψ − φ) /(sinφ sinψ) Cotangent of inverse functions:cot(arccot x) ≡ x cot(arcsin x) = √(1 − x2) /x cot(arccos x) = x /√(1 − x2) Some angles: 
 4. Derivative and indefinite integralCotangent derivative:cot′x = −csc2x ≡ −1 /sin2x Indefinite integral of the cotangent:∫ cotx dx = ln|sinx| + C where C is an arbitrary constant. 5. How to useTo calculate cotangent of the number: To get cotangent of the complex number: To get cotangent of the current result: To get cotangent of the angle φ in calculator memory: 6. SupportTrigonometric cotangent of the real argument is supported in free version of the Librow calculator. Trigonometric cotangent of the complex argument is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||