|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics |
Help 6.36^ — power function1. DefinitionPower function is the function of kind xa2. GraphPower function domain depends on power a, but it is always defined for positive real half-axis (0, +∞). Parabola graph for a = 2 is depicted below — fig. 1.
Fig. 1. Graph of the power function y = x2.
Function codomain as well depends on power a, but it always includes positive half of the real axis (0, +∞). 3. IdentitiesNegative power: x−a = 1 /xaPower sum and difference: xa + b = xa xbxa − b = xa/xb Power product: xab = (xa)b4. Derivative and indefinite integralPower derivative: xa′ = a xa−1In particular: (1 /x)′ = x−1′ = −x−2 = −1 /x2Indefinite integral of the power: ∫ xa dx = xa+1 / (a + 1) + Cfor a ≠ −1, in the case a = −1: ∫ 1 /x dx = ln|x| + CHere and above C is an arbitrary constant. 5. How to useTo calculate power of the number: To get power of the complex number: To calculate power of the current result: To engage the current result as power: To get power of the number z in calculator memory: To engage number z in memory as power: 6. SupportPower function of the real argument is supported in free version of the Librow calculator. Power function of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||