|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.34ln — natural logarithmic function1. DefinitionNatural logarithmic function is the inverse of the exponential function. 2. GraphNatural logarithmic function is defined on positive part of the real axis — so its domain is (0, +∞). 0 is a singular point. Function graph is depicted below — fig. 1. Fig. 1. Graph of the natural logarithmic function y = lnx.Function codomain is entire real axis. 3. IdentitiesBy definition: ln ex ≡ xReciprocal argument: ln(1/x) = −lnxProduct and ratio of arguments: ln(xy) = lnx + lnyln(x /y) = lnx − lny Power of argument: lnxa = a lnxBase change: logax = lnx /lnalogax = logbx /logba 4. Derivative and indefinite integralNatural logarithm derivative: ln′x = 1 /xAs well: ln′|x| = 1 /xIndefinite integral of the natural logarithm: ∫ lnx dx = x lnx − x + Cwhere C is an arbitrary constant. 5. How to useTo calculate natural logarithm of the number:
To get natural logarithm of the complex number:
To get natural logarithm of the current result:
To get natural logarithm of the number z in calculator memory:
6. SupportNatural logarithm of the real argument is supported in free version of the Librow calculator. Natural logarithm of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|