| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The Art of Mathematics | Help 6.5abs — absolute value function1. DefinitionAbsolute value function is defined as|x| = x for x ≥ 0; |x| = −x for x < 0. 2. GraphAbsolute value function is defined everywhere on real axis. Its graph is depicted below — fig. 1.  Fig. 1. Graph of the absolute value function y = |x|. Function codomain is non-negative half of the real axis: [0, +∞). 3. IdentitiesFunction is symmetrical:|−x| = |x| Sum and difference of arguments:|x + y| = |x| + |y|, if signx = signy |x + y| = ||x| − |y||, if signx ≠ signy |x − y| = ||x| − |y||, if signx = signy |x − y| = |x| + |y|, if signx ≠ signy Product and ratio of arguments:|xy| = |x||y| |x /y| = |x| /|y| 4. Derivative and indefinite integralAbsolute value derivative:|x|′ = 1 for x > 0; |x|′ = −1 for x < 0. For 0 the derivative is undefined. Indefinite integral of the absolute value:∫ |x| dx = signx x2/2 + C where sign is a signum function and C is an arbitrary constant. 5. How to useTo get absolute value of the number: To calculate absolute value of the complex number: To get absolute value of the current result: To get absolute value of the number z in calculator memory: 6. SupportAbsolute value of the real number is supported in free version of the Librow calculator. Absolute value of the complex number is supported in professional version of the Librow calculator. | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||