|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.5abs — absolute value function1. DefinitionAbsolute value function is defined as |x| = x for x ≥ 0;|x| = −x for x < 0. 2. GraphAbsolute value function is defined everywhere on real axis. Its graph is depicted below — fig. 1. Fig. 1. Graph of the absolute value function y = |x|.Function codomain is non-negative half of the real axis: [0, +∞). 3. IdentitiesFunction is symmetrical: |−x| = |x|Sum and difference of arguments: |x + y| = |x| + |y|, if signx = signy|x + y| = ||x| − |y||, if signx ≠ signy |x − y| = ||x| − |y||, if signx = signy |x − y| = |x| + |y|, if signx ≠ signy Product and ratio of arguments: |xy| = |x||y||x /y| = |x| /|y| 4. Derivative and indefinite integralAbsolute value derivative: |x|′ = 1 for x > 0;|x|′ = −1 for x < 0. For 0 the derivative is undefined. Indefinite integral of the absolute value: ∫ |x| dx = signx x2/2 + Cwhere sign is a signum function and C is an arbitrary constant. 5. How to useTo get absolute value of the number:
To calculate absolute value of the complex number:
To get absolute value of the current result:
To get absolute value of the number z in calculator memory:
6. SupportAbsolute value of the real number is supported in free version of the Librow calculator. Absolute value of the complex number is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|