|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Art of Mathematics |
Help 6.27exp — exponential function1. DefinitionExponential function is the function of kind exwhere constant e is selected so that slope of the function at point x = 1 is 45°. 2. GraphExponential function is defined everywhere on real axis. Its graph is depicted below — fig. 1. Fig. 1. Graph of the exponential function y = ex.Function codomain is positive half of the real axis: (0, +∞). 3. IdentitiesBy definition: elnx ≡ xNegative argument: e−x = 1 /exSum and difference of arguments: ex + y = ex eyex − y = ex/ey Product of arguments: exy = (ex)yBase change: ax = ex lna4. Derivative and indefinite integralExponent derivative: ex′ = exIndefinite integral of the exponent: ∫ ex dx = ex + Cwhere C is an arbitrary constant. 5. How to useTo calculate exponent of the number:
To get exponent of the complex number:
To get exponent of the current result:
To get exponent of the number z in calculator memory:
6. SupportExponent of the real argument is supported in free version of the Librow calculator. Exponent of the complex argument is supported in professional version of the Librow calculator. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|